
Demo: Proof-of-Work Network Simulator for
Blockchain and Cryptocurrency Research

Simeon Wuthier
University of Colorado, Colorado Springs

swuthier@uccs.edu

Sang-Yoon Chang
University of Colorado, Colorado Springs

schang2@uccs.edu

Abstract—Blockchain and the proof-of-work (PoW) distributed
consensus protocol rely on peer-to-peer (P2P) networking. We
build a PoW P2P simulator for the modeling and analyses of
permissionless blockchain networking. Our simulator utilizes
a built-in randomness generator for the simulations, has an
easy-to-use interface and intuitive visualization, supports dy-
namic/programmable control and modifications, and can gen-
erate simulation data for further processing. We publish our
simulator in open source to facilitate its use for blockchain
and P2P networking research and especially recommend it
for scalability research or preliminary testing. To highlight its
features and capabilities, we demonstrate the simulator use in
this paper to analyze the recent blockchain security research,
including 51% attack, eclipse, partitioning, and DoS attack.

I. INTRODUCTION

Blockchain technologies are built upon peer-to-peer (P2P)
networking and provide a reliable, decentralized, and trustless
system for blockchain applications. Within such P2P systems,
nodes behave as both the client and the server in information
delivery and form a distributed and non-hierarchical network.
Having multiple, diverse, and locally selected peer connections
helps with the security and reliability of blockchain network-
ing. The P2P connections in blockchain are critical because
they deliver information responsible for driving the blockchain
consensus protocol and the ledger synchronization.

Proof of work (PoW) is the most popular mechanism
for blockchain distributed consensus protocol. PoW achieves
consensus without relying on the identity-based trust because
cryptocurrencies require permissionless and anonymous ap-
plications, prohibiting other identity- and voting-based mech-
anisms for consensus protocols, e.g. practical byzantine fault
tolerance (PBFT). Because PoW is based on race and compe-
tition, the timely networking and block delivery are critical.

Our simulator models and analyzes P2P networking, PoW
consensus protocol, and the interrelations between the two.
It makes use of a random number generator—with the op-
tion of choosing between SHA-256 hash brute-forcing and
JavaScript-built-in random function—for mining the PoW
blocks and generating the P2P networking packet occur-
rences/transmissions. We design and build our simulator based
on our knowledge and previous hands-on experience with
Bitcoin, the most popular cryptocurrency. We build flexible
and dynamic control of the relevant parameters to enable such
analyses, provide an easy-to-use interface, and the capability
to generate and log the data for further analyses. Our simulator
is designed to facilitate and aid in blockchain networking

R&D as well as conduct the preliminary analyses for new
permissionless blockchains/cryptocurrencies.

II. TECHNICAL CONTRIBUTIONS OF THE SIMULATOR

We model, design, and build our simulator based on our
hands-on experience with a Bitcoin prototype (Bitcoin Core)
capable of mining and networking in the Mainnet [1], [2].
The layout of our simulator is comprised of two parts: P2P
communication/networking and the PoW protocol. While PoW
is dependent upon P2P, the networking portion of our simulator
was built to accommodate a wider range of applications. For
example, PoW assumes all connections are bi-directional in
nature while our simulator allows control over the direction
of traffic. This section describes such implementation-based
approaches used to model P2P and PoW scenarios.

A. Software Implementations

Figure 1 displays the screenshots of our simulator interface.
The software is implemented as a JavaScript web application,
consisting of four main classes: the Network, Miner/node,
NetworkBuffer, and the Block/Header. The Network class
encapsulates all other class instances and is responsible for
maintaining the networking-level parameters of P2P. The
Miner/node class maintains the consensus-level parameters of
PoW, as well as a NetworkBuffer to act as the router connecting
the nodes. Blockchain ledgers are stored within the Miner
and are implemented as an array/linked list of block headers.
Nodes are built with functions to mine, broadcast information,
send/receive block headers, and maintain the block-linking
structure of the blockchain.

We enable the saving and loading of the Network class by
serializing it to the user’s file system in the local hard drive, the
browser’s built-in storage (LocalStorage), or to the clipboard
via copy-and-paste. To accommodate larger networks, the se-
rialization process uses LZ-based UTF-16 string compression
which reduces the storage size. For example, it saves 87.8% of
storage from 9.9MB to 1.2MB for a network of 10,000 nodes.

B. Modeling PoW

Due to the permissionless requirement of cryptocurrencies
prohibiting identity-based or voting-based distributed consen-
sus protocol, cryptocurrencies use proof of work (PoW). Bit-
coin [3], which is the first and currently the most popular cryp-
tocurrency invented the use of random PoW for blockchain
synchronization and consensus protocol. Within this protocol,



(a) Node management screen (b) Network visualization screen (c) Node statistics screen (d) Sampling/logging screen

Fig. 1: A screenshot of the simulator, split into its four components. Figure 1a controls and manages the nodes and their
parameters. Figure 1b visualizes the network using the vis.js framework, followed by a canvas that plots any portion of the
simulator over time (with a textbox defining which object/portion). In this screenshot, the canvas is visualizing the blockchain
synchronization, where each node is given a row, and the colors represent that node’s last accepted block, i.e. what block it is
currently mining from. Figure 1c visualizes the node data in numerical format, and Figure 1d provides the sampling interface
of the network, as discussed in Section III-2.

nodes connect to one another and relay block/header messages
containing parameters necessary for PoW consensus [4]. The
process of mining a block in PoW consists of repeatedly
guessing a unique nonce value within the block header and
double hashing the header using SHA-256 until the hash is
within a numerical lower bound/difficulty threshold. Blocks
are found/mined randomly, and the average duration between
blocks is ten minutes by the Bitcoin consensus protocol design
and, more specifically, by the adaptive mining difficulty con-
trol. To capture the hash computation power/rate capabilities,
we use the built-in JavaScript function SETINTERVAL as an
artificial rate limiter to handle mining for the active miners.
The asynchronous nature of this function allows multiple
instances/miners to mine simultaneously. Because miners work
independently, it becomes possible that two miners find blocks
of the same height, thus creating a fork and the need to prior-
itize one over the other. The blocks that are not accepted are
stale blocks while the blocks that become part of the chain are
accepted blocks. Since the hash-function-based randomness
generator has a one-to-one correspondence with the nonce data
in a block, by default, our simulator verifies the validity of
a block by comparing the nonce to the lower-bound block
difficulty, rather than hashing. This is done for performance
optimization; however, we also include the Boolean property
“useSHA256” to activate the traditional block verification and
random number generator used in Bitcoin.
Simulator Parameters We enable control over the following
PoW-based parameters: network difficulty, network reward
for accepted blocks, mining hash rate per node, toggling of
the mining thread per node, as well as enabling a node to
maliciously send invalid blocks (see Section IV-3 for more
information). The PoW parameters that we measure include:
block height, stale blocks mined, miner balances/accepted
blocks mined, and the number of stale blocks in a fork.

C. Modeling P2P Networking

Blockchain technologies are dependent upon the underlying
network infrastructure that ensure blocks are transmitted and
distributed to all nodes in the network. Every node maintains

a list of outgoing and incoming connections which enable
the modeling of network topologies, and flow of network
packets. We identify each node in the network with a unique
identifier/address, along with a NetworkBuffer object that
models the routing of blocks between entities. This object uses
JavaScript’s built-in SETTIMEOUT asynchronous function to
induce an artificial delay/latency on every networking packet.
We give structure to the packet transmission by holding a
single queue/buffer within each node’s NetworkBuffer object
which limits the upper-bound rate at which packets can be
sent and received. Additionally, this also requires defining
an artificial packet size for the speed by which a packet
can travel through the network buffer. To limit this, we
define bufferSizeLimit that prevents a node’s queue/buffer from
exceeding a threshold size. Optionally, setting bufferSizeLimit
to JavaScript’s global INFINITY property enables an unlimited
network buffer.
Simulator Parameters We provide direct control over the fol-
lowing P2P-based parameters: network incoming and outgo-
ing connections/topology, transmission bandwidth/uplink and
downlink rate (controlled by block size), link latency, and
buffer/queue size limit. The P2P-based parameters that we
measure include the number of packet hops, the duration
for a packet to reach its destination, the current size of the
buffer/queue, and the list of blocks in-flight for each node.

III. SIMULATOR FEATURES

We aim to provide a vibrant set of functionalities that allow
the studying of various P2P and PoW-based components. In
this section, we highlight the notable capabilities including the
P2P networking topologies and control, as well as the dynamic
logging of the simulator for analytics and visualization.

1) P2P Networking Topologies and Parameter Control:
To simulate distributed P2P networking, we enable control
of the networking topology in each pairwise connection. For
example, Figure 2a shows a very simple four-node scenario
where the number of outgoing connections for Node 1, Node
2, Node 3, and Node 4 are 3, 1, 2, and 1, respectively.
Figure 2b duplicates this topology to show how we can



(a) Network of four nodes (b) Disconnected network (c) Ring of eight nodes

Fig. 2: Example of networking topologies

simulate disconnected networks, where Nodes 1 through 4
share a ledger, while Nodes 5 through 8 share a different
ledger. Furthermore, we also enable the building of layouts
from known P2P networking topologies [5] such as Figure 2c
where eight nodes are arranged in a Ring topology, thus
enforcing a single path from one node to another. The closest
to blockchain-based cryptocurrencies is the Mesh topology.

The simulator can also control the delay/latency and band-
width between any two peer nodes. For example, we test
our simulator to model Bitcoin networking by importing the
network size (number of peer nodes) and the channel latency
between the peer nodes from the Bitnodes dataset, a regularly
updated dataset measuring the Bitcoin P2P networking [6].
We can model and sample the channel latencies as random
variables using the empirical distribution given from the
Bitnodes dataset and compare the peer-connection statistics
of the simulator to that of our Bitcoin implementation based
on Bitcoin Core code and connected to Mainnet. In this
preliminary Bitcoin modeling, we find that the number of
connections for the simulator varies between 10 and 36 while
the number of connections for a public Bitcoin Core (version
0.21.0) node connected to the Mainnet is 32 on average; more
comparisons and details are omitted due to space constraint.

2) Dynamic Logging and Analytics Visualization: We also
add the ability to modify any portion of the network in real-
time, as defined by our logging and sample generation portion
of the simulator. As shown in Figure 1d, the interface has
an option to begin sampling, with parameters for the time per
sample (s), code to execute before sampling, between samples,
and after samples, whether or not to reset the blockchain
between samples, generate a downloadable file to export the
simulator data into a CSV file, and a list of columns to
generate in the CSV log file. If the option is selected to
reset the blockchain after each sample, then all blocks that
are currently in-flight are stopped, a snapshot is taken of the
current blockchain state, and each node’s blockchain is reset
back to the genesis block.

Granting the ability to execute user-defined JavaScript be-
fore, between, and after samples enables dynamically and
conditionally setting node/simulation parameters. For example,
to increment the computing power of a node with ID: X,
adding “X.POWER += 1” to execute between each sample will
increment the node’s computing power every sample. More
complex statements can be used to provide finer control.

(a) Modeling the eclipse attack (b) Modeling the partitioning attack

Fig. 3: Networking topologies of Eclipse and Partitioning

IV. USING THE SIMULATOR FOR ANALYSES

In this section, we explore the impact of decentralized
networking by modeling the 51% attack, eclipse attack, parti-
tioning attack, DoS attack, and Bitcoin topology. While this is
by no means comprehensive, we aim to give a starting point
for further modeling and analyses.

1) 51% Attack: When a node’s computational power be-
comes greater than the rest of the network’s combined power,
the node gains full control of the distributed ledger. We build
on the networking topology from Figure 2a by adding an
Attacker node connected to Node 1. The attacker node ignores
the other node’s blocks to create an intentional fork and reverse
the other chain/blocks by Nodes 1 through 4.
Simulation Experiment and Results We set the computing
power of the four nodes to 25 hashes per second each,
and the Attacker node to 101 hashes per second (50.25%
of the network’s power). We measure the mining balance
(number of accepted blocks) per node, excluding the attacker’s
balance which monotonically increases. Because the attacker
has greater computational power, every time the attacker’s
block height exceeds the rest of the network, the network
switches to the attacker’s blockchain to continue mining in a
new fork, however, none of the mined blocks are permanently
accepted unless the attacker decides to accept them. Since we
simulate the most simple scenario where the attacker ignores
the network, this results in the rest of the network mining
blocks at a consistent rate, but all blocks resetting repeatedly,
as shown in Figure 4.

2) Eclipse and Partitioning Attack: The eclipse attack oc-
curs when a malicious node is able to tamper with another
node’s list of potential connections and replace the identities
with the attacker’s own spoofed identities [7]. While the victim
node can be oblivious to this behavior, the attacker will have
control over the information that is sent and received by
the victim. Similarly, the partitioning attack occurs when a
connected network becomes disconnected through the strategic
intervening of connections that are necessary for the transmis-
sion of messages between two partitions of a network [8].

While the two attacks are conducted differently, the out-
comes of both the eclipse and partitioning attack result in the
control of a node’s blockchain, which we analyze.
Simulation Experiment and Results We simulate the eclipse
attack (Figure 3a), and partitioning attack (Figure 3b) by using
the Attacker node to cause intentional forks. We set all nodes
to have equal resources. In the partitioning attack, the attacker



0 50 100 150 200 250 300 350 400

Time (s)

0

10

20

30

A
c
c
o

u
n

t 
B

a
la

n
c
e Node 1 Node 2 Node 3 Node 4 Attacker

Fig. 4: Block reward balance vs. time. The 51% attacker
dominates the blocks in the chain (yielding increasing block
reward for the attacker) so that the rest of the nodes’ blocks get
revoked (the reward balance decreasing to zero). The attacker’s
balance continues to increase and becomes 418 at 400 seconds.

targets Node 6, Node 7, and Node 8. We begin by letting
the network’s block height reach 100. In our experiment, 11
of these blocks were mined by Node 6. We then use the
Attacker node to disconnect the partition of victim nodes and
let the block height reach 200 on the victim’s partition. At
this point, Node 6 has mined 46 blocks. However, the larger
partition (Nodes 1 through 5) generated a block height of 234,
so when the attacker re-connects the network, all block data
generated between height 100 to 200 become stale on the
smaller partition, and the balance of Node 6 falls back to 11.

3) DoS Attack and Congestion: In cases where there is
more networking than what is supported by the channel link
capacity, for example, due to a DoS attacker flooding the link,
the node’s networking availability will get disrupted. While
this may occur non-maliciously, the denial of service (DoS)
attack takes advantage of this by flooding unnecessary infor-
mation that wastes computing power, networking bandwidth,
memory, or other system resources.
Simulation Experiment and Results We model this attack
by conditionally enabling and disabling an attacker node using
the dynamic code execution feature discussed in Section III-2,
and the network topology in Figure 2a, with all nodes having
a bandwidth of 100 MBps and a buffer size of 1000 MB.
When this buffer size threshold is exceeded, the incoming and
outgoing packets are dropped due to memory overflow.

The DoS attacker targets Node 1. We begin by making the
attacker passive and, at 200 seconds, we activate the attacker
to flood invalid packets to the victim until 500 seconds,
before becoming passive again. Figure 5 shows how the attack
disables the victim’s ability to broadcast blocks to the network.
We show that the rate of stale blocks increases while the rate
of accepted blocks remains unchanged. The victim continues
to mine valid blocks during the attack, however, due to the
networking limitations from the attack, these blocks become
overwritten by Nodes 2 through 4 (not under the DoS attack)
before Node 1 has time to broadcast them to the other nodes
and claim the rewards. Node 1 therefore loses the forking race
and any recent blocks it mined during the DoS attack at 257
seconds become stale/invalid due to the longest-chain rule.

V. CONFERENCE DEMO

Because the simulator is software-based and since ICDCS
is held online this year, we do not need additional equipment
for the conference accommodations and presentation. In fact,

0 100 200 300 400 500 600 700

Time (s)

0

50

100

150

200

N
u

m
b

e
r 

o
f 

B
lo

c
k
s

Victim's Accepted Blocks

Victim's Stale Blocks

Fig. 5: The victim’s number of accepted and rejected blocks
during the DoS attack. While the victim continues to find
blocks (same slope), they get replaced due to network con-
gestion and the inability to broadcast newly found blocks.

the simulator is currently available1 with the source code2,
which we plan to continue to maintain and update. At the
conference, we plan to provide a dynamic demo presentation
of our simulator and its potential use for distributed comput-
ing/networking research. The demo presentation will facilitate
the dissemination and the use of the simulator and help gather
feedback for improving the simulator for the next version.

VI. CONCLUSION

Our simulator presents a wide range of capabilities and
features to enable research in networking and mining in
cryptocurrency. We use the simulator to analyze concrete
scenarios to highlight the features and capabilities. Even
though our simulator has not been advertised before this
paper, it is already garnering interests among researchers to
show its potential for blockchain research. We are in active
communications with other researchers, including those using
our simulator for a thesis dissertation research, which inspired
us to write this paper and share our simulator.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 1922410.

REFERENCES

[1] J. Kim, M. Nakashima, W. Fan, S. Wuthier, X. Zhou, I. Kim, and S.-
Y. Chang, “Anomaly detection based on traffic monitoring for secure
blockchain networking,” in International Conference on Blockchain,
2021.

[2] S.-Y. Chang and S. Wuthier, “Dynamic power control for rational cryp-
tocurrency mining,” in Proceedings of the 3rd Workshop on Cryptocur-
rencies and Blockchains for Distributed Systems, 2020, pp. 47–52.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Manubot,
Tech. Rep., 2019.

[4] “Block headers.” [Online]. Available: https://developer.bitcoin.org/
reference/block chain.html

[5] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in Proceedings of IEEE INFOCOM’96. Conference on
Computer Communications, vol. 2. IEEE, 1996, pp. 594–602.

[6] A. Yeow, “Bitnodes,” 2021. [Online]. Available: https://github.com/
ayeowch/bitnodes

[7] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in 24th {USENIX} Security Symposium
({USENIX} Security 15), 2015, pp. 129–144.

[8] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking bitcoin: Routing
attacks on cryptocurrencies,” in 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 2017, pp. 375–392.

1https://simewu.github.io/blockchain-simulator
2https://github.com/simewu/blockchain-simulator

https://developer.bitcoin.org/reference/block_chain.html
https://developer.bitcoin.org/reference/block_chain.html
https://github.com/ayeowch/bitnodes
https://github.com/ayeowch/bitnodes
https://simewu.github.io/blockchain-simulator
https://github.com/simewu/blockchain-simulator

	Introduction
	Technical Contributions of the Simulator
	Software Implementations
	Modeling PoW
	Modeling P2P Networking

	Simulator Features
	P2P Networking Topologies and Parameter Control
	Dynamic Logging and Analytics Visualization


	Using the Simulator for Analyses
	51% Attack
	Eclipse and Partitioning Attack
	DoS Attack and Congestion


	Conference Demo
	Conclusion
	References

